The Erdős-Rényi Process Phase Transition
 Part II: The Fine Scaling Random Graph Processes Austin

Joel Spencer

May 11,2016

To me, it does not seem unlikely that on some shelf of the universe there lies a total book. I pray the unknown gods that some man - even if only one man, and though it have been thousands of years ago! - may have examined and read it. If honor and wisdom and happiness are not for me, let them be for others. May heaven exist, though my place be in hell. Let me be outraged and annihilated, but may Thy enormous Library be justified, for one instant, in one being. from The Library of Babel by Jorge Luis Borges

To me, it does not seem unlikely that on some shelf of the universe there lies a total book. I pray the unknown gods that some man - even if only one man, and though it have been thousands of years ago! - may have examined and read it. If honor and wisdom and happiness are not for me, let them be for others. May heaven exist, though my place be in hell. Let me be outraged and annihilated, but may Thy enormous Library be justified, for one instant, in one being. from The Library of Babel by Jorge Luis Borges

You don't have to believe in God but you should believe in The Book. - Paul Erdős

The Erdős-Rényi Processes

$G \sim G(n, p), p=\frac{c}{n}$
$c<1$ Subcritical
$c>1$ Supercritical
$c=1$ At Criticality, Subtle

The Erdős-Rényi Processes

$G \sim G(n, p), p=\frac{c}{n}$
$c<1$ Subcritical
$c>1$ Supercritical
$c=1$ At Criticality, Subtle
Does this cover all the cases?

The Erdős-Rényi Processes

$G \sim G(n, p), p=\frac{c}{n}$
$c<1$ Subcritical
$c>1$ Supercritical
$c=1$ At Criticality, Subtle
Does this cover all the cases?
NO!!

The Erdős-Rényi Processes

$G \sim G(n, p), p=\frac{c}{n}$
$c<1$ Subcritical
$c>1$ Supercritical
$c=1$ At Criticality, Subtle
Does this cover all the cases?
NO!!
The right fine scaling (!!)

$$
p=\frac{1}{n}+\frac{\lambda}{n^{4 / 3}}
$$

Barely Subcritical

$\lambda \rightarrow \infty$ (but $p \sim \frac{1}{n}$)
$\left|C_{M A X}\right|=\Theta\left(n^{2 / 3} \lambda^{-2}(\ln \lambda)\right)=o\left(n^{-2 / 3}\right)$
$\left|C_{1}\right| \sim\left|C_{2}\right| \sim \ldots \sim\left|C_{k}\right|$ for all fixed k
All components simple ${ }^{1}$

[^0]
Barely Supercritical

$\lambda \rightarrow+\infty$ (but $p \sim \frac{1}{n}$)
DOMINANT COMPONENT
$\left|C_{M A X}\right| \sim 2 \lambda n^{2 / 3} \gg n^{2 / 3}$
$C_{M A X}$ has high complexity ${ }^{2}$

[^1]
Barely Supercritical

$\lambda \rightarrow+\infty$ (but $p \sim \frac{1}{n}$)
DOMINANT COMPONENT
$\left|C_{M A X}\right| \sim 2 \lambda n^{2 / 3} \gg n^{2 / 3}$
$C_{\text {MAX }}$ has high complexity ${ }^{2}$
Duality: Removing $C_{M A X}$ replaces λ by $-\lambda$
$\left|C_{2}\right|=\Theta\left(n^{2 / 3} \lambda^{-2}(\ln \lambda)\right)=o\left(n^{-2 / 3}\right)$
All other components simple.

[^2]
The Critical Window

λ fixed (positive, negative or zero)
$\left|C_{1}\right|=\Theta\left(n^{2 / 3}\right)$
Size and complexity have complicated distribution.
$\left|C_{k}\right|=\Theta\left(n^{2 / 3}\right)$, any fixed k
Size and complexity have complicated distribution.
Joint distribution complicated point process
No special λ - no windows inside windows

Why $n^{-4 / 3}$

$n p=1+\epsilon, \epsilon>0$
When finite, $|C(v)| \sim T_{1+\epsilon}^{P O}$.
Heavy tail until ϵ^{-2}, then exponential drop
All SMALL C have $|C|<\epsilon^{-2}$ times a bit
All "infinite" $C(v)$ join together to form dominant component.
v in dominant C with $\operatorname{Pr}\left[T_{1+\epsilon}^{P O}=\infty\right] \sim 2 \epsilon$
DOMINANT component has size $2 \epsilon n$
For dichotomy need $\epsilon^{-2} \ll 2 \epsilon n$
$\epsilon \gg n^{-1 / 3}$

Try it!

n (perhaps 10^{6}) vertices. Initially: No edges
Round i : Random x_{i}, y_{i} add $\left\{x_{i}, y_{i}\right\}$
Use Union-Find for component sizes, complexity
Parametrize round e by

$$
e /\binom{n}{2}=\frac{1}{n}+\lambda n^{-4 / 3}
$$

From $\lambda=-4$ to $\lambda=+4$ see

Try it!

n (perhaps 10^{6}) vertices. Initially: No edges
Round i : Random x_{i}, y_{i} add $\left\{x_{i}, y_{i}\right\}$
Use Union-Find for component sizes, complexity
Parametrize round e by

$$
e /\binom{n}{2}=\frac{1}{n}+\lambda n^{-4 / 3}
$$

From $\lambda=-4$ to $\lambda=+4$ see

- The dominant component emerge
- The larger components merging

Try it!

n (perhaps 10^{6}) vertices. Initially: No edges
Round i : Random x_{i}, y_{i} add $\left\{x_{i}, y_{i}\right\}$
Use Union-Find for component sizes, complexity
Parametrize round e by

$$
e /\binom{n}{2}=\frac{1}{n}+\lambda n^{-4 / 3}
$$

From $\lambda=-4$ to $\lambda=+4$ see

- The dominant component emerge
- The larger components merging
- $\left|C_{2}\right|$ rise and fall
- $\sum|C|^{2}$ becoming $\left|C_{M A X}\right|^{2}$

Try it!

n (perhaps 10^{6}) vertices. Initially: No edges
Round i : Random x_{i}, y_{i} add $\left\{x_{i}, y_{i}\right\}$
Use Union-Find for component sizes, complexity
Parametrize round e by

$$
e /\binom{n}{2}=\frac{1}{n}+\lambda n^{-4 / 3}
$$

From $\lambda=-4$ to $\lambda=+4$ see

- The dominant component emerge
- The larger components merging
- $\left|C_{2}\right|$ rise and fall
- $\sum|C|^{2}$ becoming $\left|C_{M A X}\right|^{2}$
- lots more!

Tertiary terms!

$p=n^{-1}+\lambda n^{-4 / 3}, k \sim c n^{2 / 3}$
$X=$ number of tree components of size k

$$
E[X]=\binom{n}{k} k^{k-1} p^{k-1}(1-p)^{k(n-k)+\binom{k}{2}-(k-1)}
$$

$E[X] \sim(2 \pi)^{-1 / 2} n^{-2 / 3} c^{-5 / 2} e^{A(c)}$ with $A(c)=\left[(\lambda-c)^{3}-\lambda^{3}\right] / 6$ Density $(2 \pi)^{-1 / 2} c^{-5 / 2} e^{A(c)}$
Point Process but not independent.
Palm process: Condition on c means $\lambda \leftarrow \lambda-c$

Asymptotic Counting

k fixed, $n \rightarrow \infty$
$C(n, k)=$ number of connected G, n vertices, complexity k $\mathcal{G}=$ all such G on $\{0, \ldots, n-1\} . \mathcal{T}=$ trees
Cayley: $|\mathcal{T}|=C(n, 0)=n^{n-2}$

$$
B F S: \mathcal{G} \rightarrow \mathcal{T}
$$

$C(n, k)=n^{n-2} E\left[B F S^{-1}(T)\right], T \in \mathcal{T}$ uniform
$B F S^{-1}(T)=\binom{M}{k}$.
M counts $\{i, j\}, j$ in queue when i popped.

BFS on Random Trees

j joins tree at time W_{j}, uniform
$X_{t}=$ number joining at time t, Poisson 1.
$Y_{t}=$ queue at time t
Excursion: $Y_{n}=0, Y_{t}>0$ for $t<n$.
$M=\sum_{t}\left(Y_{t}-1\right)$, area under queue curve

BFS on Random Trees

j joins tree at time W_{j}, uniform
$X_{t}=$ number joining at time t, Poisson 1.
$Y_{t}=$ queue at time t
Excursion: $Y_{n}=0, Y_{t}>0$ for $t<n$.
$M=\sum_{t}\left(Y_{t}-1\right)$, area under queue curve Limiting Behavior: Brownian Excursion!

$$
E\left[\binom{M}{k}\right] \sim\left(n^{3 / 2}\right)^{k} E\left[B^{k}\right] / k!
$$

with B area under standard Browninan Excursion.

BFS on Random Trees

j joins tree at time W_{j}, uniform
$X_{t}=$ number joining at time t, Poisson 1.
$Y_{t}=$ queue at time t
Excursion: $Y_{n}=0, Y_{t}>0$ for $t<n$.
$M=\sum_{t}\left(Y_{t}-1\right)$, area under queue curve Limiting Behavior: Brownian Excursion!

$$
E\left[\binom{M}{k}\right] \sim\left(n^{3 / 2}\right)^{k} E\left[B^{k}\right] / k!
$$

with B area under standard Browninan Excursion.
$C(n, k) \sim c_{k} n^{n-2}\left[n^{3 / 2}\right]^{k}$
c_{k} Wright Constants. $c_{1}=\sqrt{\pi / 8}, \ldots$

More Asymptotic Counting

$$
p=n^{-1}+\lambda n^{-4 / 3}, k \sim c n^{2 / 3}
$$

$X^{+}=$number of components of size k
Density $(2 \pi)^{-1 / 2} c^{-5 / 2} e^{A(c)} \sum_{k=0}^{\infty} c_{k} c^{3 k / 2}$

A Mysterious Process

Product Rule

Begin with no edges. Each round:
Pick $x_{1}, x_{2}, y_{1}, y_{2}$ at random.
IF $\left|C\left(x_{1}\right)\right| \cdot\left|C\left(x_{2}\right)\right|<\left|C\left(y_{1}\right)\right| \cdot\left|C\left(y_{2}\right)\right|$ add $\left\{x_{1}, x_{2}\right\}$ to G
ELSE add $\left\{y_{1}, y_{2}\right\}$ to G
Strong antigravity

A Mysterious Process

Product Rule

Begin with no edges. Each round:
Pick $x_{1}, x_{2}, y_{1}, y_{2}$ at random.
IF $\left|C\left(x_{1}\right)\right| \cdot\left|C\left(x_{2}\right)\right|<\left|C\left(y_{1}\right)\right| \cdot\left|C\left(y_{2}\right)\right|$ add $\left\{x_{1}, x_{2}\right\}$ to G
ELSE add $\left\{y_{1}, y_{2}\right\}$ to G
Strong antigravity
$f(t)=\left|C_{M A X}\right| / n$ at round $t n / 2$. Critical $t_{c r} \sim 1.78$
Conjecture: (Achlioptas, D'Souza, JS) First order phase transition $-f(t)$ discontinuous at $t=t_{c}$.

A Mysterious Process

Product Rule

Begin with no edges. Each round:
Pick $x_{1}, x_{2}, y_{1}, y_{2}$ at random.
IF $\left|C\left(x_{1}\right)\right| \cdot\left|C\left(x_{2}\right)\right|<\left|C\left(y_{1}\right)\right| \cdot\left|C\left(y_{2}\right)\right|$ add $\left\{x_{1}, x_{2}\right\}$ to G
ELSE add $\left\{y_{1}, y_{2}\right\}$ to G
Strong antigravity
$f(t)=\left|C_{M A X}\right| / n$ at round $t n / 2$. Critical $t_{c r} \sim 1.78$
Conjecture: (Achlioptas, D'Souza, JS) First order phase transition $-f(t)$ discontinuous at $t=t_{c}$.
Theorem: (Riordan, Warnke): You're WRONG!

Open Questions

- What are asymptotics of $f\left(t_{c r}+\epsilon\right)$ as $\epsilon \rightarrow 0^{+}$

Open Questions

- What are asymptotics of $f\left(t_{c r}+\epsilon\right)$ as $\epsilon \rightarrow 0^{+}$
- What is the scaling for the critical window

Open Questions

- What are asymptotics of $f\left(t_{c r}+\epsilon\right)$ as $\epsilon \rightarrow 0^{+}$
- What is the scaling for the critical window
- What is max $\left|C_{2}\right|$ throughout the process

Open Questions

- What are asymptotics of $f\left(t_{c r}+\epsilon\right)$ as $\epsilon \rightarrow 0^{+}$
- What is the scaling for the critical window
- What is $\max \left|C_{2}\right|$ throughout the process
- What is going on???

I like things that look difficult and intractable to solve they challenge me because they are more interesting to figure out.
France Córdova, Director, National Science Foundation

[^0]: ${ }^{1}$ Simple $=$ Tree or Unicyclic

[^1]: ${ }^{2}$ complexity $=$ edges - vertices +1

[^2]: ${ }^{2}$ complexity $=$ edges - vertices +1

