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To me, it does not seem unlikely that on some shelf of

the universe there lies a total book. I pray the unknown

gods that some man - even if only one man, and though

it have been thousands of years ago! - may have

examined and read it. If honor and wisdom and

happiness are not for me, let them be for others. May

heaven exist, though my place be in hell. Let me be

outraged and annihilated, but may Thy enormous Library

be justified, for one instant, in one being.

from The Library of Babel by Jorge Luis Borges
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You don’t have to believe in God but you should believe

in The Book. – Paul Erdős
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The Erdős-Rényi Processes

G ∼ G (n, p), p = c
n

c < 1 Subcritical
c > 1 Supercritical
c = 1 At Criticality, Subtle
Does this cover all the cases?
NO!!
The right fine scaling (!!)

p =
1

n
+

λ

n4/3



Barely Subcritical

λ→∞ (but p ∼ 1
n
)

|CMAX | = Θ(n2/3λ−2(lnλ)) = o(n−2/3)
|C1| ∼ |C2| ∼ . . . ∼ |Ck | for all fixed k

All components simple 1

1Simple = Tree or Unicyclic
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Barely Supercritical

λ→ +∞ (but p ∼ 1
n
)

DOMINANT COMPONENT

|CMAX | ∼ 2λn2/3 >> n2/3

CMAX has high complexity 2

Duality: Removing CMAX replaces λ by −λ
|C2| = Θ(n2/3λ−2(ln λ)) = o(n−2/3)
All other components simple.

2complexity = edges - vertices + 1



The Critical Window

λ fixed (positive, negative or zero)
|C1| = Θ(n2/3)
Size and complexity have complicated distribution.
|Ck | = Θ(n2/3), any fixed k

Size and complexity have complicated distribution.
Joint distribution complicated point process
No special λ – no windows inside windows



Why n
−4/3

np = 1 + ǫ, ǫ > 0
When finite, |C (v)| ∼ TPO

1+ǫ.
Heavy tail until ǫ−2, then exponential drop
All SMALL C have |C | < ǫ−2 times a bit
All “infinite” C (v) join together to form dominant component.
v in dominant C with Pr[TPO

1+ǫ =∞] ∼ 2ǫ
DOMINANT component has size 2ǫn
For dichotomy need ǫ−2 ≪ 2ǫn
ǫ≫ n−1/3



Try it!

n (perhaps 106) vertices. Initially: No edges
Round i : Random xi , yi add {xi , yi}
Use Union-Find for component sizes, complexity
Parametrize round e by

e/

(

n

2

)

=
1

n
+ λn−4/3

From λ = −4 to λ = +4 see
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n (perhaps 106) vertices. Initially: No edges
Round i : Random xi , yi add {xi , yi}
Use Union-Find for component sizes, complexity
Parametrize round e by

e/

(

n
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)

=
1

n
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From λ = −4 to λ = +4 see

◮ The dominant component emerge

◮ The larger components merging

◮ |C2| rise and fall

◮

∑

|C |2 becoming |CMAX |
2

◮ lots more!



Tertiary terms!

p = n−1 + λn−4/3, k ∼ cn2/3

X = number of tree components of size k

E [X ] =

(

n

k

)

kk−1pk−1(1− p)k(n−k)+(k
2)−(k−1)

E [X ] ∼ (2π)−1/2n−2/3c−5/2eA(c) with A(c) = [(λ− c)3 − λ3]/6
Density (2π)−1/2c−5/2eA(c)

Point Process but not independent.
Palm process: Condition on c means λ← λ− c



Asymptotic Counting

k fixed, n→∞
C (n, k) = number of connected G , n vertices, complexity k

G = all such G on {0, . . . , n − 1}. T = trees
Cayley: |T | = C (n, 0) = nn−2

BFS : G → T

C (n, k) = nn−2E [BFS−1(T )], T ∈ T uniform
BFS−1(T ) =

(

M
k

)

.
M counts {i , j}, j in queue when i popped.



BFS on Random Trees

j joins tree at time Wj , uniform
Xt = number joining at time t, Poisson 1.
Yt = queue at time t

Excursion: Yn = 0, Yt > 0 for t < n.
M =

∑

t(Yt − 1), area under queue curve
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BFS on Random Trees

j joins tree at time Wj , uniform
Xt = number joining at time t, Poisson 1.
Yt = queue at time t

Excursion: Yn = 0, Yt > 0 for t < n.
M =

∑

t(Yt − 1), area under queue curve
Limiting Behavior: Brownian Excursion!

E [

(

M

k

)

] ∼ (n3/2)kE [Bk ]/k!

with B area under standard Browninan Excursion.
C (n, k) ∼ cknn−2[n3/2]k

ck Wright Constants. c1 =
√

π/8,. . .



More Asymptotic Counting

p = n−1 + λn−4/3, k ∼ cn2/3

X+ = number of components of size k

Density (2π)−1/2c−5/2eA(c)
∑

∞

k=0 ckc3k/2



A Mysterious Process

Product Rule

Begin with no edges. Each round:
Pick x1, x2, y1, y2 at random.
IF |C (x1)| · |C (x2)| < |C (y1)| · |C (y2)| add {x1, x2} to G

ELSE add {y1, y2} to G

Strong antigravity
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A Mysterious Process

Product Rule

Begin with no edges. Each round:
Pick x1, x2, y1, y2 at random.
IF |C (x1)| · |C (x2)| < |C (y1)| · |C (y2)| add {x1, x2} to G

ELSE add {y1, y2} to G

Strong antigravity
f (t) = |CMAX |/n at round tn/2. Critical tcr ∼ 1.78
Conjecture: (Achlioptas, D’Souza, JS) First order phase
transition – f (t) discontinuous at t = tc .
Theorem: (Riordan, Warnke): You’re WRONG!
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Open Questions

◮ What are asymptotics of f (tcr + ǫ) as ǫ→ 0+

◮ What is the scaling for the critical window

◮ What is max |C2| throughout the process

◮ What is going on???



I like things that look difficult and intractable to solve –

they challenge me because they are more interesting to

figure out.

France Córdova, Director, National Science Foundation


